The effects of Gamijinhae-tang on elastase/lipopolysaccharide-induced lung inflammation in an animal model of acute lung injury
نویسندگان
چکیده
BACKGROUND Gamijinhae-tang (GJHT) has long been used in Korea to treat respiratory diseases. The therapeutic effect of GJHT is likely associated with its anti-inflammatory activity. However, the precise mechanisms underlying its effects are unknown. This study was conducted to evaluate the protective effects of GJHT in a porcine pancreatic elastase (PPE) and lipopolysaccharide(LPS) induced animal model of acute lung injury (ALI). METHODS In this study, mice were intranasally exposed to PPE and LPS for 4 weeks to induce chronic obstructive pulmonary disease (COPD)-like lung inflammation. Two hours prior to PPE and LPS administration, the treatment group was administered GJHT extracts via an oral injection. The numbers of neutrophils, lymphocytes, macrophages and total cells in the bronchoalveolar lavage (BAL) fluid were counted, and pro-inflammatory cytokines were also measured. For histologic analysis, hematoxylin and eosin (H&E) stains and periodic acid-Schiff (PAS) stains were evaluated. RESULTS After inducing ALI by treating mice with PPE and LPS for 4 weeks, the numbers of neutrophils, lymphocytes and total cells were significantly lower in the GJHT group than in the ALI group. In addition, the IL-1β and IL-6 levels were significantly decreased in the GJHT group. The histological results also demonstrated the attenuation effect of GJHT on PPE- and LPS-induced lung inflammation. CONCLUSIONS The results of this study indicate that GJHT has significantly reduces PPE- and LPS-induced lung inflammation. The remarkable protective effects of GJHT suggest its therapeutic potential in COPD treatment.
منابع مشابه
Does gallic acid improve cardiac function by attenuation of oxidative stress and inflammation in an elastase-induced lung injury?
Objective(s): Cardiovascular disease has an important role in mortality caused by lung injury. Emphysema is associated with impaired pulmonary gas exchange efficiency and airflow limitation associated with small airway inflammation. The aim was to evaluate the interactions between lung injury, inflammation, and cardiovascular disease. Since gallic acid has antioxidant ...
متن کاملTime-dependent changes of autophagy and apoptosis in lipopolysaccharide-induced rat acute lung injury
Objective(s): Abnormal lung cell death including autophagy and apoptosis is the central feature in acute lung injury (ALI). To identify the cellular mechanisms and the chronology by which different types of lung cell death are activated during lipopolysaccharide (LPS)-induced ALI, we decided to evaluate autophagy (by LC3-II and autophagosome) and apoptosis (by caspase-3) at different time point...
متن کاملp-Coumaric acid protects cardiac function against lipopolysaccharide-induced acute lung injury by attenuation of oxidative stress
Objective(s): Acute lung injury (ALI) has a high mortality rate and is characterized by damage to pulmonary system giving rise to symptoms such as histological alteration, lung tissue edema and production of proinflammatory cytokine. p-Coumaric acid (p-CA), as a phenolic compound, that is found in many types of fruits and vegetables has been reported to exhibit a thera...
متن کاملTime course changes of oxidative stress and inflammation in hyperoxia-induced acute lung injury in rats
Objective(s):Therapies with high levels of oxygen are commonly used in the management of critical care. However, prolonged exposure to hyperoxia can cause acute lung injury. Although oxidative stress and inflammation are purported to play an important role in the pathogenesis of acute lung injury, the exact mechanisms are still less known in the hyperoxic acute lung injury (HALI). Materials ...
متن کاملDoes p-coumaric acid improve cardiac injury following LPS-induced lung inflammation through miRNA-146a activity?
Objective: In cardiovascular diseases, inflammatory response plays an important role and affects heart function. As a flavonoid compound, p-coumaric acid (pCA), commonly exists in many fruits and vegetables and has a therapeutic effect on inflammatory diseases due to its anti-inflammatory properties. The purpose of the present study was to investigate pCA anti-inflammatory effect and the miRNAs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2013